参考資料2 - 科学の基礎研究
0z=a+biz=x+yiz=x+yiz=a+biz=a+biz=x+yiz=x+yiz=a+biz=e^iθz=e^iθe^iθ=cosθ+isinθe^iθ=cosθ+isinθe^iθ=cosθ+isinθe^iθ=cosθ+isi
0z=a+biz=x+yiz=x+yiz=a+biz=a+biz=x+yiz=x+yiz=a+biz=e^iθz=e^iθe^iθ=cosθ+isinθe^iθ=cosθ+isinθe^iθ=cosθ+isinθe^iθ=cosθ+isi
0z=e^iθz=e^iθe^iθ=cosθ+isinθe^iθ=cosθ+isinθz=e^iθ=cosθ+isinθz=e^iθ=cosθ
0z*=a-biz*=x-yiz*=x-yiz*=a-biz*=a-biz*=x-yiz*=x-yiz*=a-biz=e^iθz=e^iθz*=e^i(-θ)z*=e^(-iθ)z*=e^-iθz*=e^-iθz*=e^(-iθ)z*=e^i(-θ)z=
0z=e^iθz*=e^i(-θ)z*=e^(-iθ)z*=e^-iθz*=e^-iθz*=e^(-iθ)z*=e^i(-θ)z=e^iθe^
z=e^iθe^iθ=cosθ+isinθz=e^iθ=cosθ+isinθz=a+biz=a+bi=e^iθ=cosθ+isinθz=a+biz=a+bi=a+ibz=a+bi=a+ib=e^iθ=cosθ+isinθz=e^iθz=1e^iθe^iθ=cosθ+isi
z=e^iθe^iθ=cosθ+isinθz=e^iθ=cosθ+isinθz=a+biz=a+bi=e^iθ=cosθ+isinθz=a+biz=a+bi=a+ibz=a+bi=a+ib=e^iθ=cosθ+isinθz=e^iθz=1e^iθe^iθ=cosθ+isi
z=e^iθe^iθ=cosθ+isinθz=e^iθ=cosθ+isinθz=a+biz=a+bi=e^iθ=cosθ+isinθz=a+biz=a+bi=a+ibz=a+bi=a+ib=e^iθ=cosθ+isinθz=e^iθz=Ae^iθe^iθ=cosθ+isinθA
rmThe general terms一般項いっぱんこうrCommon RatioThe common ratios公比こうひAn=A1[r^(n-1)]An+1=A1[(r^n)]An=r^(n-1)A1An+1=(r^n)A1An=A1[r^(n-1)]An+1=A1[(r^
z=e^iθe^iθ=cosθ+isinθz=e^iθ=cosθ+isinθz=e^iθz=1e^iθe^iθ=cosθ+isinθ1e^iθ=1(cosθ+isinθ)z=1e^iθz=1e^iθ=1(cosθ+isinθ)z=a+biz=a+bi=a+ibz=e^i
vΔS/Δt=(1/2)rvsinθΔS/Δt=ΔS/Δt(1/2)rvsinθ=(1/2)rvsinθrvsinθ=rvsinθGMm/r^2=GMm/r^2(GMm/r^2)rvsinθ=(GMm/r^2)rvsinθ(GMm)rvsinθ=(GMm)rvsinθ(GMm)r
vΔS/Δt=(1/2)rvsinθΔS/Δt=ΔS/Δt(1/2)rvsinθ=(1/2)rvsinθrvsinθ=rvsinθGMm/r^2=GMm/r^2(GMm/r^2)rvsinθ=(GMm/r^2)rvsinθ(GMm)rvsinθ=(GMm)rvsinθ(GMm)r
v(cosθ)'Fv=FvS=(1/2)rvsinθS=S(1/2)rvsinθ=(1/2)rvsinθrvsinθ=rvsinθGMm/r^2=GMm/r^2(GMm/r^2)rvsinθ=(GMm/r^2)rvsinθF[rvsinθ]=F[rvsinθ]Frvsinθ=Fr
tyAnti Gravitation向心力こうしんりょく遠心力えんしんりょく単振動たんしんどうフックふっくバネばねF=Fma=maGMm/r^2=GMm/r^2mvv/r=mvv/rmω^2r=mω^2rkr=krF=maF=GMm/r^2F=mvv/rF=mω^2rF=krI=
tyAnti Gravitation向心力こうしんりょく遠心力えんしんりょく単振動たんしんどうフックふっくバネばねF=Fma=maGMm/r^2=GMm/r^2mvv/r=mvv/rmω^2r=mω^2rkr=krF=maF=GMm/r^2F=mvv/rF=mω^2rF=kr角運
rmThe general terms一般項いっぱんこうrCommon RatioThe common ratios公比こうひAn=A1[r^(n-1)]An+1=A1[(r^n)]An=r^(n-1)A1An+1=(r^n)A1An=A1[r^(n-1)]An+1=A1[(r^
rmThe general terms一般項いっぱんこうrCommon RatioThe common ratios公比こうひAn=A1[r^(n-1)]An+1=A1[(r^n)]An=r^(n-1)A1An+1=(r^n)A1An=A1[r^(n-1)]An+1=A1[(r^
rmThe general terms一般項いっぱんこうrCommon RatioThe common ratios公比こうひAn=A1[r^(n-1)]An+1=A1[(r^n)]An=r^(n-1)A1An+1=(r^n)A1An=A1[r^(n-1)]An+1=A1[(r^
rmThe general terms一般項いっぱんこうrCommon RatioThe common ratios公比こうひAn=A1[r^(n-1)]An+1=A1[(r^n)]An=r^(n-1)A1An+1=(r^n)A1An=A1[r^(n-1)]An+1=A1[(r^
rmThe general terms一般項いっぱんこうrCommon RatioThe common ratios公比こうひAn=A1[r^(n-1)]An+1=A1[(r^n)]An=r^(n-1)A1An+1=(r^n)A1An=A1[r^(n-1)]An+1=A1[(r^
rmThe general terms一般項いっぱんこうrCommon RatioThe common ratios公比こうひAn=A1[r^(n-1)]An+1=A1[(r^n)]An=r^(n-1)A1An+1=(r^n)A1An=A1[r^(n-1)]An+1=A1[(r^
avitation反重力はんじゅうりょくAttraction引力いんりょくRepulsion斥力せきりょく反引力はんいんりょくF=GMm/r^2Fr=GMm/rF'r=(GMm/r)'F'rΔt=(GMm/r)'Δt&Sig
tyAnti Gravitation向心力こうしんりょく遠心力えんしんりょく単振動たんしんどうフックふっくバネばねF=Fma=maGMm/r^2=GMm/r^2mvv/r=mvv/rmω^2r=mω^2rkr=krF=maF=GMm/r^2F=mvv/rF=mω^2rF=kr角運
tyAnti Gravitation向心力こうしんりょく遠心力えんしんりょく単振動たんしんどうフックふっくバネばねF=Fma=maGMm/r^2=GMm/r^2mvv/r=mvv/rmω^2r=mω^2rkr=krF=maF=GMm/r^2F=mvv/rF=mω^2rF=kr角運
tyAnti Gravitation向心力こうしんりょく遠心力えんしんりょく単振動たんしんどうフックふっくバネばねF=Fma=maGMm/r^2=GMm/r^2mvv/r=mvv/rmω^2r=mω^2rkr=krF=maF=GMm/r^2F=mvv/rF
作用の導出過程2作用反作用の導出過程3作用反作用の導出過程4作用反作用の導出過程5作用反作用の導出過程6作用反作用の導出過程7An=A1[r^(n-1)]An+1=A1[(r^n)]An=r^(n-1)A1An+1=(r^n)A1An=A1[r^(n-1)]An+1=A1[(r^
ょうどA/mD Electric Flux DensityThe electric flux densities電束密度でんそくみつどC/m^2jIElectric CurrentThe electric currents電流でんりゅうEElectric Field Streng
作用の導出過程2作用反作用の導出過程3作用反作用の導出過程4作用反作用の導出過程5作用反作用の導出過程6作用反作用の導出過程7An=A1[r^(n-1)]An+1=A1[(r^n)]An=r^(n-1)A1An+1=(r^n)A1An=A1[r^(n-1)]An+1=A1[(r^
Bの居る座標を結ぶ線のこと・垂線点Aから直線Bへの垂線execute as A at @s rotated as B positioned ^ ^ ^2000 facing entity B feet positioned ^ ^ ^2000 run command点Aから面Bへ
ょうどA/mD Electric Flux DensityThe electric flux densities電束密度でんそくみつどC/m^2jIElectric CurrentThe electric currents電流でんりゅうEElectric Field Streng
tyAnti Gravitation向心力こうしんりょく遠心力えんしんりょく単振動たんしんどうフックふっくバネばねF=Fma=maGMm/r^2=GMm/r^2mvv/r=mvv/rmω^2r=mω^2rkr=krF=maF=GMm/r^2F=mvv/rF=mω^2rF=kr角運
t^0=lnt^0(Δ/Δt)(t^a)=at^(a-1)a=1(Δ/Δt)(t^1)=1t^(1-1)(Δ/Δt)t=t^0(Δ/Δt)(t^a)=at^(a-1)a=0(&Delt
elta;V/ΔxJ=-qDdρ/dxJ=qρμE∂/∂t=σ∂^2/∂x^2∂V/∂t=σ∂^2V/∂x^2dV/dt=σd^2
んわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+Ca=0 C=0ΣΔx=(x^1)/1ΣΔx
んわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+Ca=0 C=0ΣΔx=(x^1)/1ΣΔx
作用の導出過程2作用反作用の導出過程3作用反作用の導出過程4作用反作用の導出過程5作用反作用の導出過程6作用反作用の導出過程7An=A1[r^(n-1)]An+1=A1[(r^n)]An=r^(n-1)A1An+1=(r^n)A1An=A1[r^(n-1)]An+1=A1[(r^
nces等比数列とうひすうれつRecurrence RelationThe recurrence relations漸化式ぜんかしきr=ae^bθr/a=e^bθr/a=e^bθθ=ωtr/a=e^bωtx=rcosθx/a=(r/a)cosθr/a=e^bωtx/a=(e^bω
on;ςTachosTakhosVelocitasVelocityThe velocities速度そくどDimentionLT^-1ベクトル量aAccelerationThe accelerations加速度かそくどDimentionLT^−2ベクトル量
on By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+Ca=0 C=0ΣΔx=(x^1)/1ΣΔx=xΣΔFx=FxΣΔFx=ΣF'xΔt+ΣFvΔtFx=Σ
s等比数列とうひすうれつRecurrence RelationThe recurrence relations漸化式ぜんかしきAn=A1[r^(n-1)]An+1=A1[(r^n)]An=r^(n-1)A1An+1=(r^n)A1An=A1[r^(n-1)]An+1=A1[(r^
txn+1=xn-(vn-1+xn-1Δt)Δtxn+1=xn-vn-1*Δt-xn-1Δt^2xn+1=xn+xn-xn-1-xn-1Δt^2xn+1=2xn-xn-1-xn-1Δt^2(-xn+1)=-2
ns漸化式ぜんかしきオイラーの公式Fv=1F=mamav=1Fv=-1F=mamav=-1av=m+nと(-av)=m+nm(m+n)=1m^2+nm-1=0av=e^m=n(-av)=-e^-m=nav=n(-av)=nav>m=e^avav>mm<av(-a
on By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+Ca=0 C=0ΣΔx=(x^1)/1ΣΔx=xΣΔFx=FxΣΔFx=ΣF'xΔt+ΣFvΔtFx=Σ
on By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+Ca=0 C=0ΣΔx=(x^1)/1ΣΔx=xΣΔFx=FxΣΔFx=ΣF'xΔt+ΣFvΔtFx=Σ
on By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+Ca=0 C=0ΣΔx=(x^1)/1ΣΔx=xΣΔFx=FxΣΔFx=ΣF'xΔt+ΣFvΔtFx=Σ
RelationThe recurrence relations漸化式ぜんかしきオイラーの公式v=F+nと(-v)=F+nF(F+n)=1F^2+nF-1=0v=e^F=n(-v)=-e^-F=nv=n(-v)=nv>F=e^xv>FF<v(-v)>(-F
=1F=mamav=1amv=1Fv=-1F=mamav=-1amv=-1a(-mv)=1mv=a+nと(-mv)=a+na(a+n)=1a^2+na-1=0mv=e^a=n(-mv)=-e^-a=nmv=n(-mv)=na>mv=e^aa>mvmv<a(-a)
1/tt/E=1t=EE=ttx=1Ex=1tx=-1E=ttx=-1Ex=-1E(-x)=1x=E+nと(-x)=E+nE(E+n)=1E^2+nE-1=0x=e^E=n(-x)=-e^-E=nx=n(-x)=nx>E=e^xx>EE<x(-x)>(-E
on By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+Ca=0 C=0ΣΔx=(x^1)/1ΣΔx=xΣΔFx=FxΣΔFx=ΣF'xΔt+ΣFvΔtFx=Σ
んわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+Ca=0 C=0ΣΔx=(x^1)/1ΣΔx
on By Parts部分積分ぶぶんせきぶんSummation By Parts部分和分ぶぶんわぶんΣΔFx=ΣF'xΔt+ΣFvΔtΣ(x^a)Δx=(x^a+1)/a+1+Ca=0 C=0ΣΔx=(x^1)/1ΣΔx=xΣΔFx=FxΣΔFx=ΣF'xΔt+ΣFvΔtFx=Σ